skip to main content


Search for: All records

Creators/Authors contains: "Baral, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Logical connectives and their implications on the meaning of a natural language sentence are a fundamental aspect of understanding. In this paper, we investigate whether visual question answering (VQA) systems trained to answer a question about an image, are able to answer the logical composition of multiple such questions. When put under this Lens of Logic, state-of-the-art VQA models have difficulty in correctly answering these logically composed questions. We construct an augmentation of the VQA dataset as a benchmark, with questions containing logical compositions and linguistic transformations (negation, disjunction, conjunction, and antonyms). We propose our Lens of Logic (LOL) model which uses question-attention and logic-attention to understand logical connectives in the question, and a novel Fréchet-Compatibility Loss, which ensures that the answers of the component questions and the composed question are consistent with the inferred logical operation. Our model shows substantial improvement in learning logical compositions while retaining performance on VQA. We suggest this work as a move towards robustness by embedding logical connectives in visual understanding. 
    more » « less
  2. In multi-agent domains (MADs), an agent's action may not just change the world and the agent's knowledge and beliefs about the world, but also may change other agents' knowledge and beliefs about the world and their knowledge and beliefs about other agents' knowledge and beliefs about the world. The goals of an agent in a multi-agent world may involve manipulating the knowledge and beliefs of other agents' and again, not just their knowledge/belief about the world, but also their knowledge about other agents' knowledge about the world. Our goal is to present an action language (mA+) that has the necessary features to address the above aspects in representing and RAC in MADs. mA+ allows the representation of and reasoning about different types of actions that an agent can perform in a domain where many other agents might be present -- such as world-altering actions, sensing actions, and announcement/communication actions. It also allows the specification of agents' dynamic awareness of action occurrences which has future implications on what agents' know about the world and other agents' knowledge about the world. mA+ considers three different types of awareness: full-, partial- awareness, and complete oblivion of an action occurrence and its effects. This keeps the language simple, yet powerful enough to address a large variety of knowledge manipulation scenarios in MADs. The semantics of mA+ relies on the notion of state, which is described by a pointed Kripke model and is used to encode the agent's knowledge and the real state of the world. It is defined by a transition function that maps pairs of actions and states into sets of states. We illustrate properties of the action theories, including properties that guarantee finiteness of the set of initial states and their practical implementability. Finally, we relate mA+ to other related formalisms that contribute to RAC in MADs. 
    more » « less